Formulas of power engineering

Cross section

- for direct current and single $\left.\begin{array}{l}\begin{array}{l}\text { phase alternative current } \\ \text { Einphasen-Wechselstrom }\end{array} \\ \begin{array}{l}\text { of known current } \\ \text { for three-phase current }\end{array} \\ \text { for } \\ \text { (mm }=\frac{2 \cdot I \cdot 1}{\mathrm{k} \cdot \mathrm{u}}\left(\mathrm{mm}^{1,732 \cdot \mathrm{I} \cdot \cos \varphi \cdot 1}\right. \\ \mathrm{k} \cdot \mathrm{u}\end{array} \mathrm{mm}^{2}\right)$
- for direct current and single phase alternative current

$$
q=\frac{2 \cdot 1 \cdot P}{\kappa \cdot u \cdot U}
$$ (mm^{2}) of known power for three-phase current

$q=\frac{1 \cdot P}{k \cdot u \cdot U}\left(\mathrm{~mm}^{2}\right)$

Voltage drop

For low voltage cable network of normal operation, it is advisable of a voltage drop of $3-5 \%$.
On exceptional case, higher values (up to 7%) can be permitted in case of network-extension or in short-circuit.

- for direct current of known current
for single phase alternative current for three-phase current

$$
\begin{aligned}
& u=\frac{2 \cdot I \cdot 1}{k \cdot q}(v) \\
& u=\frac{2 \cdot I \cdot \cos \varphi \cdot 1}{\kappa \cdot q}(v) \\
& u=\frac{1,732 \cdot I \cdot \cos \varphi \cdot 1}{\kappa \cdot q}(v)
\end{aligned}
$$

- for direct current of known power
for single phase alternative current for three-phase current
$u=\frac{2 \cdot 1 \cdot p}{\kappa \cdot q \cdot u}(v)$
$u=\frac{2 \cdot 1 \cdot p}{\kappa \cdot q \cdot U}(v)$
$u=\frac{1 \cdot p}{\kappa \cdot q \cdot U}(v)$
$\mathrm{u}=$ voltage drop(V)
$\mathrm{U}=$ operating voltage (V)
$\mathrm{P}=$ power (W)
$\mathrm{R}_{\mathrm{w}}=$ effective resistance $\left.(\Omega) / \mathrm{km}\right)$
$\mathrm{L} \quad=$ Inductance ($\mathrm{mH} / \mathrm{km}$)
$\omega \mathrm{L}=$ induktiver Widerstand
$(\Omega) / \mathrm{km})(\omega=2 \cdot \pi \cdot f$
at $50 \mathrm{~Hz}=314$)
$\mathrm{q}=$ cross-section (mm^{2})
I = working current ($\mathrm{A}=$ Ampere)
$1=$ length of the line
in m
$\kappa($ Kappa $)=$ electrical conductivity
of conductors ($\mathrm{m} / \mathrm{\Omega} \cdot \mathrm{~mm}^{2}$)
к-copper: 58

Nominal voltage

The nominal voltage is to be expressed with two values of alternative current $\mathrm{U}_{0} / \mathrm{U}$ in V (Volt).
$\mathrm{U}_{0} / \mathrm{U}=$ phase-to-earth voltage
Uo : Voltage between conductor and earth or metallic covering (shields, armouring, concentric conductor)
U : Voltage between two outer conductors
$U_{0} \quad: U / \sqrt{3}$ for three-phase current systems
$U_{0} \quad: \quad \mathrm{U} / 2$ for single-phase and direct current systems
U_{0} / U_{0} : an outer conductor is earth-connected for A. C.- and Nominal current

Active current

I in (A)

Reactive current

$\mathrm{I}_{\mathrm{W}}=\mathrm{I} \cdot \cos \varphi$

Blindstrom

$\mathrm{I}_{0}=\mathrm{I} \cdot \sin \varphi$

Apparent power (VA)

$\mathrm{S}=\mathrm{U} \cdot \mathrm{I}$
$S=1,732$
Active power (W)
$\mathrm{P}=\mathrm{U} \cdot \mathrm{I} \cdot \cos \varphi$
$\mathrm{P}=1,732 \cdot \mathrm{U} \cdot \mathrm{I} \cdot \cos \varphi$
$\mathrm{P}=\mathrm{U} \cdot \mathrm{I}$

Reactive power (var)

$Q=U \cdot I \cdot \sin \varphi$
$Q=1,732 \cdot U \cdot I \cdot \sin \varphi$ (Voltampere reactiv)
for single phase current (A. C.) for three-phase current
for single phase current (A. C.) for three-phase current for direct current
for single phase current (A. C.) for three-phase current $Q=P \cdot \tan \varphi$

Phase angle

φ is a phase angle between voltage and current

$\cos \varphi=1,0$	0,9	0,8	0,7	0,6	0,5
$\sin \varphi=0$	0,44	0,6	0,71	0,8	0,87

Insulation resistance

$\mathrm{R}_{\mathrm{iso}}=\frac{\mathrm{S}_{\mathrm{iso}}}{\mathrm{l}} \cdot \ln \frac{\mathrm{Da}}{\mathrm{d}} \cdot 10^{-8}(\mathrm{M} \Omega \cdot \mathrm{km})$

Specific Insulation resistance

$R_{s}=\frac{R \cdot 2 \pi \cdot 1 \cdot 10^{8}}{\ln \frac{D a}{d i}}$
$\mathrm{D}_{\mathrm{a}}=$ outer diameter over insulation (mm)
d $=$ conductor diameter (mm)
$\mathrm{di}=$ inner diameter of insulation (mm)
I = length of the line (m)
$S_{\text {iso }}=S$ Sec. resistance of insulation materials $(\Omega \cdot \mathrm{cm})$
Mutual capacity $\left(C_{B}\right)$ for single-core,
three-core and H -cable)

$$
C_{B}=\frac{\xi r \cdot 10^{3}}{18 \ln \frac{0 \mathrm{D}}{\mathrm{~d}}}(\mathrm{nF} / \mathrm{km})
$$

Inductance

Single-phase
$0,4 \cdot\left(\ln \frac{\mathrm{Da}}{\mathrm{r}}+0,25\right) \mathrm{mH} / \mathrm{km}$
three-phase
$0,2 \cdot\left(\mathrm{In} \frac{\mathrm{Da}}{\mathrm{r}}+0,25\right) \mathrm{mH} / \mathrm{km}$
$\mathrm{D}_{2} \quad=$ distance - mid to mid
of both conductors
= radius of conductor (mm)
छ $\mathrm{C}=$ dielectric constant
$0,25=$ factor for low frequency

Earth capacitance

$E_{C}=0,6 \cdot C_{B}$

Charging current (only for three-phase current)

$\mathrm{I}_{\text {Lad }}=\mathrm{U} \cdot 2 \pi \mathrm{f} \cdot \mathrm{C}_{\mathrm{B}} \cdot 10^{-6} \mathrm{~A} / \mathrm{km}$ je Ader bei 50 Hz

Charging power

$\mathrm{P}_{\text {Lad }}=\mathrm{I}_{\text {lad }} \cdot \mathrm{U}$

Leakage and loss factor

$G \quad=\tan \delta \cdot \omega \mathrm{C}(\mathrm{S})$

$$
\begin{aligned}
\omega & =2 \pi \mathrm{f} \\
\mathrm{C} & =\text { Capacity } \\
\tan \delta & =\text { loss factor } \\
\mathrm{S} & =\text { Siemens }=\frac{1}{1 \Omega}
\end{aligned}
$$

$$
\tan \delta=\frac{C}{\omega C} \quad \tan \delta=\text { loss factor }
$$

Dielectric loss

$D_{v}=U^{2} \cdot 2 \pi f \cdot C_{B} \cdot \tan \cdot 10^{-6}(\mathrm{~W} / \mathrm{km})$
f on 50 Hz

tand PE/VPE cables	$\sim 0,0005$
EPR	$\sim 0,005$

Paper-single core, three-core, H-cable $\sim 0,003$
Oil-filled and pressure cable
$\sim 0,003$
PVC-cable
$\sim 0,05$
It should be noted that for the current load of the insulated cables and wires of selected cross-section, the power ratings table is also be considered.
To estimate the voltage drop of insulated wires and cables for heavy (big) cross-sections of single- and three-phase-overhead line, the active resistance as well as the inductive resistance must be considered.
The formula for single-phase (A. C.):
$\mathrm{U}=2 \cdot 1 \cdot \mathrm{I} \cdot\left(\mathrm{R}_{\mathrm{w}} \cdot \cos \varphi+\omega \mathrm{L} \cdot \sin \varphi\right) \cdot 10^{-3}(\mathrm{~V})$
Three-phase:
$U=1,732 \cdot 1 \cdot I \cdot\left(R_{w} \cdot \cos \varphi+\omega L \cdot \sin \varphi\right) \cdot 10^{-3}(V)$

